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Personal recollections give a sampling of some of Onsager's later interests in ice 
and biomembranes. The author's involvement in these topics led to modeling a 
particular biomembrane phase transition using dimer models. Recent work is 
described for a particularly rich dimer model which is isomorphic to the 
F-model in three kinds of fields (direct, staggered, and quarter). New results for 
the full three-dimensional phase diagram show (1) how the anomalous OK 
multicritical point is destroyed by a direct field, and (2) how a new line of 
critical points must be added to the phase diagram in direct and staggered fields 
obtained previously by Baxter, due to diverging susceptibilities in the quarter 
field. 
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branes. 

1. RECOLLECTIONS 

As a young physics graduate  s tudent  in 1962 I was fascinated by the 
mysteries of statist ical  mechanics. After searching unsuccessfully for a 
statist ical  mechanician on the Yale physics faculty, I heard abou t  this 
chemist. Being a snobby young mathemat ica l  physicist,  I thought  it 
unlikely that  a chemist could do deep mathemat ica l  science, Nevertheless,  
I made  my way to Onsager,  who ta lked abou t  several possible projects, 
though I did not  really unders tand all of them until years later. It was 
clear, however,  that  his math  was deep enough for me. Since three of his 
advanced physics s tudents  had recently finished superconduct iv i ty  projects,  
going beyond BCS by including electron correlat ions,  I thought  it logical 
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to carry on that project and I saw a way to use a computer to do the 
algebra that would allow carrying the perturbation expansions further. 
That, however, did not appeal to Onsager, who did not have a high regard 
for computers. Perhaps by way of explanation, Gell-Mann and Brueckner 
had used a computer to approximate, replete with error bars, the value of 
an integral involved in electron correlation functions. Onsager obtained the 
exact value, which lay embarassingly outside the estimated errors. (~ 
However, when I visited Lars in Miami a year or so before his death, he 
was very enthusiastic with his Hewlett-Packard reverse Polish calculator to 
help do his calculations on ion transport in solution. He impressed me with 
knowing how to use his a lot better than I knew how to use mine, so 
I think he would eventually have come to appreciate computers better. 

One time in early 1963 when I was talking to Onsager in his office 
about superconductivity, he closed his eyes and took a little nap. I got the 
message and stopped working on superconductivity. I might mention, 
though, that he had a habit of sleeping in seminars, even exceptionally 
good ones. This did not prevent him from engaging in deep discussion 
at the end. I also think that Lars preferred expressing himself nonverbally 
or with very few words. Misguided graduate students thought that this 
was due to a lack of proficiency with English and some even called his 
statistical mechanics courses by the names Norwegian I and Norwegian II. 
But his command of English was exceptional, as evidenced by his habit of 
doing the New York Times crossword puzzles, which were too challenging 
for most of us. His papers were also written with great verbal skill, though 
some readers complain about his preference for leaving out many of the 
more pedestrian mathematical steps. Notice that I say his preference for 
leaving out pedestrian steps, not his habit of leaving them out. 1 think that 
it was a well-thought-out preference because he himself enjoyed working 
things out himself instead of seeing them all written out. I think he felt that 
this was the best way to learn and, in turn, this accounted for his method 
of teaching and communicating. 

After awhile I was told by one of Onsager's chemistry graduate 
students, Kelly Runnels, about a mathematical problem involving the 
residual entropy of common ice. Onsager had proved that Linus Pauling's 
calculation was only a lower bound. (21 After I had made a little progress, 
I talked to Lars about it. The level of his enthusiasm was very great indeed, 
considerably higher than for superconductivity. The only problem l had 
with working on ice was explaining to my physics department why it was 
worthy of a physicist. When I asked Lars for a reason, he simply said that 
"There is a lot of it around." Statistical mechanicians now appreciate ice as 
the prototypical vertex model and there are now elegant exact solutions in 
two dimensions due to Lieb for the six-vertex model TM and Baxter for the 
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eight-vertex model, ~4~ though my refined approximation is still the best 
available for real three-dimensional ice. 15) 

A few years after I had obtained my Ph.D. from Lars, I decided that 
I should branch out from esoteric statistical mechanics and felt that my 
background in hydrogen-bonded materials such as ice might be useful in 
biology. When I mentioned this to Lars, he suggested that I visit Yale and 
work with him on the problem of ion conduction through the membranes 
of nerve axons. He had a theory that small cations such as sodium might 
be transported along chains of hydrogen bonds formed from the side 
chains of proteins. By the way, Onsager did not like to publish much, as 
is well known. He reserved his publications for his best ideas, and he 
seldom published things that did not turn out right and did not have high 
significance. This ion channel idea was one that he slipped into four publi- 
cations, 16-9) including his Nobel Prize speech. Lars clearly felt that biology 
was the next great frontier and I think he felt his work on ice to be one 
route to biology. It is noteworthy that, during the late 1960s and early 
1970s when critical phenomena and phase transitions became fashionable, 
Onsager did not participate, but was thinking about ice and biology. I like 
to interpret this as his recognition that critical phenomena were in good 
hands and that he could explore and help initiate another wave of theoreti- 
cal science. 

However, returning to the particular project on ion channel conduc- 
tion through membranes, new data came in which made us realize that 
chains of hydrogen bonds could not, in fact, provide enough current for the 
sodium channels in nerve axions and Onsager dropped this project. Before 
I mention the sequel to this topic, however, I think it is worth mentioning 
that Lars did not apply his classical irreversible thermodynamics to ion 
conduction through membranes. The reason is that the energies involved 
are too large compared to kT, so that one is probably not in the linear 
transport regime. For more details I refer to one of my papers, ~~ which 
gives references to Onsager's brief remarks on this. 

Here is the sequel to the story of Onsager's idea that chains of 
hydrogen bonds between the side chains of proteins would provide a 
natural pathway for ion movement through biomembranes. Although such 
chains would facilitate small ion conduction such as sodium by solvating 
the ion, they would be much better conduction pathways for protons. Lars 
was very well aware of this from his ice studies, which focused on protonic 
semiconductivity. However, in 1969 few people thought proton conduction 
through membranes was important. That changed rapidly by the mid- 
1970s with experimental proof of Peter Mitchell's chemiosmotic 
hypothesis. Neither Lars nor I had noticed this development, but Harold 
Morowitz at Yale had and Harold remembered something of Lars' earlier 
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ideas. Harold, fearing he would not understand Lars, contacted me and I 
worked on it with Harold for a bit until we had enough to write a letter 
to Lars. Sadly, shortly after we mailed the letter, Lars died and the oppor- 
tunity for an exciting collaboration was lost. I would like to report that this 
idea swept the bioenergetics field and vindicated Lars' basic idea. That is 
still premature. We have developed the idea in different contexts ~tI'~2~ and 
it has received a fair hearing. It is being tested experimentally for various 
membrane proteins, which is not an easy undertaking. My guess is that it 
will hold up to some extent, probably involving bound water as well as 
protein side chains to form the proton channels. 

I cannot help but tell one more Onsager anecdote that involves the 
fields of membrane biology and ice. Lars and I were attending a session on 
membranes at a New York Academy of Sciences meeting in 1971. I was 
getting a bit bored and was sneaking toward the exit when I looked back 
and saw Lars practically running after me. He preceeded to tell me about 
bovulline and drew some pictures. What little I remembered of Latin made 
me think that bovulline must have something to do with cows, and that fit 
with the context of a biology meeting. However, after asking a lot of 
elementary questions, which was the only way to communicate with Lars, 
I discovered that he had made a much more subtle mental jump. Bovulline 
is an organic molecule that undergoes multiple sequential tautamerization 
that performs a permutation of its carbon atoms, as indicated in Fig. 1. 
The graph of the permutations has order three and rather long shortest 
cycles with 12 steps before returning to the original state without trivial 
backtracking. This feature is similar to the graph of the classical basis 
states in ice as an excess proton performs a random walk, as indicated in 
Fig. 1. Lars had earlier that year produced a quantum mechanical calcula- 
tion for the energy density of these ionic states that was exact for a Bethe 
lattice which has order three and infinitely long shortest cycles. (The actual 
ice lattice has shortest cycles of 18 steps and 2D ice has shortest cycles of 
14 steps.) We had wondered if there is a specific graph-theoretic algorithm 
that would, in the appropriate limit, produce a Bethe lattice. Lars was 
suggesting that the graph of permutations of bovulline, suitably generalized 
to hyperbovulline by adding more carbons to the three legs of the 
molecule, might do this job. After working on this for awhile back home, 
I proved that Lars' generalization of bovulline did not do it, but has 
shortest cycles with 12 steps even in the limit. So, in the best Onsager 
tradition, this was put into a filing cabinet drawer along with many neat 
Onsager ideas that did not have maximum significance. 

I might mention, however, that the quantum mechanical work on 
proton mobility in ice ~J3~ did finally get written after I badgered him into 
doing it. The order of the authors is rather amusing, by the way. Mou-shan 
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Fig. 1. Left: Two CtoH16 bovulline molecules related by breaking one of the three bonds in 
the tight triangle and forming another tight triangle at the other end of the molecule, thereby 
permuting the carbon numbering that generates a graph of local coordination number 3. 
Right: One of the basis states of two-dimensional ice with one ( + ) ionic defect that is connected 
to three other basis states by shifting an excess proton along one of the three arrows. 

Chen did only one of the more  minor  sections in this paper,  but  as a 
s tudent  he had bri l l iantly corrected an Onsager  mistake on ionic t ranspor t  
in solution,  work that  da ted  back to the 1930s. Onsager  published very few 
mistakes in any of his many fields, so it was much to Chen's  credit to find 
one. Lars,  however,  p rocras t ina ted  helping Mou-shan  write a paper ,  but  
not  in telling o ther  researchers about  it, until others  finally publ ished the 
correction. So, first au thorsh ip  on the unrelated p ro ton  mobi l i ty  papers  
was Chen's  reward! Jill Bonner  discovered,  using matr ix  methods  she had 
used when working  with Michael  Fisher,  that  the quan tum mechanical  
p roblem could be solved on a Cayley tree and I simplified the analysis. The 
density of states is amusing,  in that  it is, in mathemat ica l  language, 
everywhere dense, but  nowhere continuous.  I pul led all the equil ibr ium 
calculat ions together,  wrote it up, and supposed that  this would be a 
satisfactory first paper.  But Lars  then proceeded,  over a per iod of a year  or 
so, to do the nontr ivial  t ranspor t  calculations,  based on the Cayley tree 
calculat ions ra ther  than on his Bethe approximat ion .  It is a paper  that  I 
learned much from and one that  I am proud  to have been an au thor  of, 
with many  theoret ical  innovat ions  and relevance to a real material .  
However,  if he had not felt an obl igat ion to his coauthors ,  I think he 
would not  have published it because it was not  a definitive paper.  The 
exper imental  da t a  were and still are murky,  and there is a p le thora  of o ther  
likely choices for the basic t ranspor t  model  in addi t ion  to tunneling. 

Many  of us have wondered  how many  such excellent, but  not  out-  
s tanding,  pieces of work  were left in the filing cabinet.  Incidentally,  I might 

822/78/1-2-37 



554 Nagle 

mention two other items that I know were in that filing cabinet. One was 
his letter to Bruria Kaufman showing how to obtain the critical exponent 
fl for the Ising model. The second was some scraps of paper from which he 
could reconstruct a way to checkmate with a bishop and knight-- in 
Kriegspiel (blindfolded chess)! But do not ask me to reproduce the proce- 
dure! 

Before finishing this set of recollections, let me emphasize that Lars 
was also involved with many other problems and a number of other 
students in these later years. Unfortunately, we students did not have the 
breadth of knowledge to be able to benefit from each other's work with 
Lars; it was difficult enough to catch up to him in one's own thesis area! 
I should also emphasize that this activity level was really quite high, but he 
did not go out of his way to give seminars, so that even his faculty 
colleagues tended to have only partial pictures that suggested to some that 
his activity level was lower than it actually was. 

2. D I M E R  M O D E L S  FOR B I O M E M B R A N E S  

Fortunately for me, the same year 1970 when we determined that 
hydrogen-bonded chains were not appropriate for sodium channels in 
nerve, I found another biology problem involving membranes and statisti- 
cal mechanics that I continue to work on today. Although Lars was not 
involved with this problem, the statistical mechanical aspect is a grandchild 
of the two-dimensional Ising model that Lars solved first, t~4J 

The biological connection is different from the ionic transport through 
biomembranes. The latter problem focused on the proteins embedded in 
lipid bilayers. The lipid bilayers, however, undergo phase transitions that in 
turn impact the activity of the membrane proteins. Another focus, there- 
fore, is the lipid bilayer. 

The main lipid bilayer phase transition is driven by the conformational 
melting of the hydrocarbon chains. This is similar to the melting transition 
in hydrocarbon crystals such as alkanes or polyethylene, with one impor- 
tant difference. Both above and below the lipid bilayer transition one end 
of each hydrocarbon chain is pinned to a nearly planar interface with 
water. This imposes an anisotropic boundary condition which is correlated 
to a considerable difference in the thermal behavior of exactly solvable 
lattice models.l~5 I 

The simplest model for the main lipid bilayer phase transition allows 
chains to proceed away from the water interface with a choice of three 
options that may be modeled as one trans and two gauche continuations. 
When this is imposed onto a two-dimensional lattice, it becomes 
isomorphic to a dimer model, which I have called the K-model, originally 
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Fig. 2. Specific heat of an O-type transition (dashed lines) compared to a K-type transition 
(solid lines). 

solved by KasteleynJ ~6~ The model has also been generalized to allow for 
a volume increase at the main transition. These developments were recently 
reviewed, 1~7) so details will not be given here. It is worth mentioning, 
however, that despite obvious simplifications required to obtain exactly 
solvable models, respectable quantitative agreement with experiment has 
been achieved. I ~81 

From the point of view of statistical mechanics, the remarkable feature 
of the K-model and the other models for lipid bilayers is that the phase 
transition is a totally different type from the phase transition in the two- 
dimensional Ising model, despite the fact that both models can be solved 
by the same Pfaffian technique. 1161 This is emphasized by the specific heat 
curves shown in Fig. 2. It is my suggestion that these two types of tran- 
sition be called O-type and K-type transitions, after Onsager and Kasteleyn, 
who first obtained them from exact solutions. The traditional alternative to 
O-type transition is to call this an Ising transition. Also, the K-type 
transition is better known to many condensed matter physicists as the 
Pokrovsky-Talapov transition. Considerable detail regarding the features 
that make a dimer model have transitions of O-type versus K-type can be 
found in our reviewJ ~71 

3. N E W  R E S U L T  F O R  F - M O D E L  

Until very recently, all the known phase transitions obtained by the 
Pfaffian method were either K-type or O-type. Furthermore, even though 
some models had more than one transition, they were always of the same 
type unless the basic energy parameters in the models were changed. It had 
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Fig. 3. The icelike two-dimensional six-vertex model. In the F-model the linear molecules 
have lowest energy. The direct field D points in the vertical (North-South) direction. The 
staggered field S favors linear molecules aligned along the NE-SW (NW-SE) directions on 
the A and C (B and D) sublattices, respectively. The quarter field Q points in the NW (NE, 
SE, SW) direction on the A (B, C. D) sublattices, respectively. The unit cell is shown by 
dashed lines. For the particular state shown, within the unit cell the energy of the A molecule 
is - D - Q ,  the energy of the B molecule is - Q ,  and the energies of the C and D molecules 
are each - S .  
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Fig. 4. The F-model phase diagram in D and S fields at kT=2~/ln(2). Along the D = 0  line 
the transition is O-type at S = 0. When D :~ 0 the solid lines show loci of K-type transitions. 
The regions labeled I (I1-I4) are incommensurate regions with domain walls in which the 
polarization P varies continuously. The dashed lines show the loci of the new O-type 
transitions. 
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Our  new dimer model is isomorphic to the six-vertex F-model at the 
one particular temperature where Baxter showed that the F-model can be 
solved using the Pfaffian technique. 12~ The difference with Baxter's work 
was that he solved the F-model with two fields, a direct field D and the 
staggered field S which couples to the order parameter,  ~211 whereas our 
recent work 1191 solved the F-model in a new quarter field Q as well as the 
staggered field S, but with no D field. The description of these various fields 
is shown in Fig. 3. 

The phase diagram in the D - S  plane obtained by Baxter is shown in 
Fig. 4, along with a new O-type transition line that will be justified in due 
course. Our  phase diagram ~91 in the S - Q  plane is shown in Fig. 5a. It was 
not a priori obvious how the two phase diagrams in Figs. 4 and 5a are 
connected when all three fields (D, S, Q) are varied. This is now shown by 
the phase diagrams in Figs. 5b-5d. 

(a) 4 . . . . .  , . / , ~ , /  

2 02 / C2 P=-1/2 

- 2 D1 1/2 
P=0 

- 4  , i , , 
2 4 

Q 

(b) 
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oo 0 -0 - - - - - - - ~  , 1 ~  

- 2 D1 ~ C1 P=1/2 

2 4 

Q 

Fig..5. The F-model phase diagram at kT= 2e/In(2) in S and Q fields for selected values of 
the D field. All phase diagrams are symmetric upon replacing Q by -Q. The solid lines are 
loci of K-type transitions. The polarization P varies continuously in the ! regions. (a) D = 0. 
The dashed line along the S= 0 axis is a locus of O-type transitions. The OK multicritical 
point is the intersection of the dashed line with one of the solid K-type lines. (b) /?=0.1, 
(c) D= 1.6, and (d) D=2.0. 
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Fig. 5. (Continued) 

Figure 5b shows the effect of adding a small direct field D = 0.1. Com- 
pared to the D = 0 phase diagram shown in Fig. 5a, continuity between the 
regions in the two figures is obvious except in the vicinity of the OK multi- 
critical point, which disappears in Fig. 5b. There, the K-type line that goes 
through the multicritical point tears into two lines, the O-type line in 
Fig. 5a changes into a K-type line in Fig. 5b and the disordered D2 phase 
separates the I2 phase from the I1 phase, although this separation becomes 
very small for large Q. The intersections of the K-type lines with the Q = 0 
axis on Fig. 5b map into the K-type lines in Fig. 4; this identifies the I1 
regions as the same in both figures. 

The phase diagrams in Fig. 5 are symmetric upon replacing Q by - Q. 
Also, when D is replaced by - D ,  the phase diagrams in Fig. 5 are obtained 
by changing S to - S  and P to - P ;  this also changes the phases according 
to Cl *-* C2, D1 ~ D2, I1 *-* I2, and I3 *-* I4. 

As D increases, the I2 and C2 regions are pushed to larger values of 
Q and the Il region expands for small S consistent with Fig. 4. The C1 
region also moves to smaller Q. It was unexpected, however, that the 
K-type line that separates the C1 region from the I1 region intersects the 
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S = 0 plane. This intersection occurs at one point when cosh D = 2 and at two 
points when cosh D > 2, as shown in Fig. 5c. In Fig. 4 these intersections are 
shown as the dashed lines, which will be identified as O-type lines later. 

Figure 4 also shows the perfectly ordered C3 phase with P =  1 that 
occurs for cosh D > 3. The effect of varying S and Q while holding D fixed 
at the value D = 2.0 is shown in Fig. 5d. From the C3 phase, increasing Q 
takes one through the 13 phase with decreasing P to the partially ordered 
C1 phase with P = 1/2. 

The phase diagrams in Figs. 4 and 5 were obtained using the well- 
known Pfaffian method. Details of the calculations are straightforwardly 
similar to our previous work .  117'19) The evaluation of the central determi- 
nant yields 

det(M1) = [-2 sinh(S) - sinh(D - i~)]2 

-4cosh2(Q/2)[cosh(D-i(~-S)-l]+sin2(O/2) (1) 

where 0 and ~b are the integration variables when obtaining the free energy 
from log[det (Ml)] .  The transition lines in the phase diagrams are obtained 
from the zeros of det(Ml) when ~b = 0  and 0 = 0 or n. Zeros appear for 
other values of 0 in the incommensurate regions indicated by I I - I 4  in the 
figures. No general proof was found that there are no zeros when ~b :~ 0, but 
extensive numerical searching failed to reveal any other zeros. Because D 
and ~ only appear in the combination D-i~b,  the polarization P can only 
change in the incommensurate regions. ~19~ 

The new O-type lines that occur in the D-S plane in Fig. 4 when 
Q = 0 are characterized by divergences of the quarter susceptibility, which 
is just the second derivative of the free energy with respect to Q and is 
therefore the derivative of the quarter polarization PQ with respect to Q. 
The behavior of det(Ml)  as these lines are approached is given asymptoti- 
cally to lowest order as 

det(Ml) ~ 0 2 + ~b 2 + Q2 (2) 

so the quarter susceptibility diverges as - l n  IQI as Q approaches zero. ILTI 
How can it be understood that the new O-lines were not previously 

apparent before a Q field was introduced? At the simplest level, this can be 
understood by analogy to the O-line at 0 = Q = S =  D when D is swept 
through D = 0. In this latter case, it is only the introduction of a staggered 
field S that yielits a staggered susceptibility that diverges at S = 0 = D. The 
topology of the phase diagram in the vicinity of the new O-line in Fig. 4 
is identical to that of the old O-line, with Q replacing S. This topology can 
be described as each O-type point being the intersection of two K-type 
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lines such that circumnavigating the O-point takes one through a sequence 
of four phases that alternate as commensurate, incommensurate, commen- 
surate, and incommensurate. 

The mathematical development of such O-lines can be understood in 
terms of the behavior of the zeros of det(Ml) and the doubling of the unit 
cell when a new field such as S or Q is imposed. This doubles the angle 0 
and each band of zeros that occur in the complex v = exp(i~b) plane splits 
into two equal bands. When the system is in the interior of an incommen- 
surate phase such that the real zero occurs when 0 is in the center of its 
band, then the split separates two zeros on the unit circle in the v plane, 
which gives the asymptotic behavior in Eq. 2. (17'19) Since a variety of fields 
may be introduced with different-sized unit cells, this discussion suggests 
that lines within incommensurate regions may contain a countably infinite 
number of O-type transition points. This property would seem to be 
consistent with the presence of long-range correlation functions ('-2~ in these 
phases. 

In summary, the new O-lines emphasize that incommensurate regions 
may be rich in critical points when other fields are considered, but I believe 
this paper shows that these lines are well understood in physical and 
mathematical terms. This work also reveals the unusual structure of the 
phase diagram near the nonstandard OK multicritical point, which still has 
some mysterious features regarding the correlation functions and scaling 
behavior. (~9~ Of course, it is preposterous to suppose that this OK multi- 
critical point would ever be the hole in the dike of current universal 
theories the way that Onsager's solution of the 2D Ising model was for the 
classical universal theories. But it is interesting to speculate which kind of 
theory Onsager would value most today. Although I only knew him from 
his late 50's, I would be willing to bet that, because of his love and 
appreciation of variety in science, he would opt for the solutions of par- 
ticular models rather than universal theory. I feel that he was by tempera- 
ment somewhat closer to biology than to physics, though his superb 
mathematical ability cloaked this and made him seem more of a physicist. 
However, I am sure there are others who disagree with this highly personal 
and undoubtedly incomplete characterization. Indeed, Lars Onsager was 
too large to be pigeonholed in any way. Quite likely, when different views 
of Onsager are compared, the results will be similar to the classic story of 
three blind men examining an elephant. 
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